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A B S T R A C T

Describing the behaviors of free-living animals is broadly useful for ecological and physiological research, but
obtaining accurate records for difficult-to-observe species presents a considerable challenge. Tri-axial accel-
erometers are increasingly used for this purpose by exploiting behavioral observations from accelerometer-
carrying animals to predict behaviors of unobserved conspecifics. We developed a modeling approach to predict
behaviors of wolverines from collar-mounted accelerometers using Support Vector Machines. By applying a
temporal smoothing function and setting a lower threshold for a-posteriori prediction probabilities, we improve
the predictive performance of our model and simultaneously create a framework for explicitly accounting for
behaviors unknown to the model, a problem that remains largely unaddressed in similar studies. We demonstrate
that such an approach can achieve a model-averaged accuracy of 98.3%, with high predictive performance for
the behaviors resting, running, scanning, tearing at food, and transferring items with the mouth, a behavior
typically associated with caching food among captive wolverines. To illustrate the utility of this approach, we
apply this model to a sample of seven free-living wolverines in Arctic Alaska.

1. Introduction

Describing the behaviors of free-living animals can provide im-
portant insights regarding a wide range of ecological processes. Taken
alone, analysis of such behavioral records can be used to investigate
temporal patterns in activity, including association among behaviors,
yielding insights regarding circadian rhythms in the daily partitioning
of behaviors or inter-individual differences in such temporal patterns
(Garthe et al., 2003; Yoda and Ropert-coudert, 2007). When coupled
with environmental and physiological information, behavioral analyses
can address how such extrinsic and intrinsic factors influence beha-
vioral decisions made by animals, including tradeoffs such as allocating
time between foraging and antipredator behavior (Hamel and Côté,
2008; Studd et al., 2019; Switalski, 2003).
However, since documenting behavior has traditionally relied on

direct observation, it is often a difficult or impossible task to assemble
comprehensive records for remotely tracked free-living animals that
have not been directly observed. Species that occupy areas that are
remote or logistically difficult for human observers to access, such as
under water, under snow, or in trees, present obvious challenges, as do
species that range widely, travel quickly, or for which human

observation alters behavior.
The rise of accelerometer-derived behavioral records promises to

reduce these obstacles (Shepard et al., 2008). This process, whereby
free-living animals are tagged with tri-axial accelerometers and the
resulting data are used to predict the behaviors of the wearer, has been
applied to a variety of marine (Battaile et al., 2015; Viviant et al., 2010;
Whitney et al., 2010), and increasingly, terrestrial species (Hammond
et al., 2016; McClune et al., 2014; Pagano et al., 2017; Wang et al.,
2015). Resulting behavioral records have been used to investigate be-
haviors important to life history and fitness, including predation and
mating events, and foraging strategies.
Using accelerometer data to classify behavior typically begins by

building a predictive classification model based on observer-labeled
accelerometer data. The labeled data are collected either by directly
observing conspecific or surrogate species while wearing accel-
erometers (Campbell et al., 2013), or with the use of additional bio-
loggers, such as video cameras, affixed to free-living individuals
(Nakamura et al., 2015; Pagano et al., 2017; Watanabe and Takahashi,
2012). A classification model, such as a statistical learning classifier
(Tatler et al., 2018) or decision tree analysis (Bellsolá, 2019) can then
be applied to the labeled data to train and evaluate candidate models,
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after which the final model can be applied to free-living individuals
where no direct observations or ancillary data for determining beha-
viors are available.
Here, we developed and evaluated the first predictive model that

can be used to classify behaviors of free-living wolverines (Gulo gulo)
using collar-mounted tri-axial accelerometers, based on visual ob-
servations of captive wolverines wearing similar collar-mounted ac-
celerometers. Further, we used labeled accelerometer data from these
captive conspecifics to create a framework by which behaviors not
exhibited by the captive wolverines, and therefore unknown to the
model, would be classified as “unknown,” rather than incorrectly
classified to the best fitting known acceleration pattern. By developing
such a model, we hoped to broaden the field of possible questions that
can be addressed regarding the interactions of the environment, phy-
siology, and ecology of wolverines, and provide a framework that other
researchers can employ for other species to address similar questions
while explicitly addressing the problem of incorrect attribution for
behaviors unknown to the model. Finally, to demonstrate the utility of
our modeling approach, we applied several candidate models to a small
sample of free-living wolverines and assessed temporal trends of
resting, running, vigilance behavior, and behaviors associated with
handling food.

2. Methods

A schematic outlining the workflow is included in Fig. 1.

2.1. Data collection

2.1.1. Captive wolverines
We collected accelerometer data and behavioral observations from

three captive adult wolverines (two females and one male) at Nordens
Ark, Hunnebostrand, Sweden, between March 4 and March 14, 2019.
Wolverines were anaesthetized using a combination of ketamine, mid-
azolam, and medetomidine. Collars were mounted with tri-axial ac-
celerometers (AXY-3, 10 g, Technosmart Europe Srl., Colle Verde,
Italy), GPS units (GIPSY 5, 100 g, Technosmart Europe Srl., Colle Verde,
Italy), light/temperature loggers (Intigeo-C330, 3.3 g, Migrate
Technology Ltd., Cambridge, United Kingdom) and timer-activated re-
lease mechanisms (TRD-L, 30 g, Lotek Wireless Inc., Newmarket,
Canada), and weighed less than 3% of the animal's body mass.
Accelerometers recorded at a frequency of 10 Hz. Collars were set to
automatically release after approximately 10 days.
We conducted behavioral observations of these captive collared

wolverines for 4–8 h per day from a platform and paths adjacent to
their enclosures. We assembled an ethogram during the course of ob-
servations, creating new behavioral classes to accommodate behaviors
as they were observed. We defined behaviors according to distinct
motions and/or postures, which we expected to register differently in
the accelerometer data (Appendix A). We opportunistically recorded
behaviors exhibited by wolverines, along with associated timestamps
from a watch that was synchronized with the accelerometers. Upon
retrieving the accelerometers, we recorded the time each device was
turned off, for use later in assessing temporal drift.
All animal handling and observation was consistent with Nordens

Ark's own permitting and University of Alaska Fairbanks Institutional
Animal Care and Use Committee (UAF IACUC) protocol #1373175.

2.1.2. Free-living wolverines
We collected accelerometer data from seven free-living adult wol-

verines (three females and four males) in the vicinity of Toolik Field
Station, Alaska (68° 38′ N, 149° 36′ W) during spring and summer 2018.
Captures took place between February 25 and April 18, and accel-
erometer data were collected between February 25 and July 27.
Wolverines were captured using baited lumber box traps (modified
from Lofroth et al., 2008), and anaesthetized using Telazol™ (175 mg,

Fig. 1. Methodological workflow of the study. A combination of accelerometer
data from captive and free-living wolverines was used to train, evaluate, and
validate the use of Support Vector Machines (SVM) for behavior classification.
The “full training” dataset refers to all accelerometer data for which we ob-
served the animal's behavior, and which belongs to a behavior with>20 ob-
servations. This dataset was randomly split into two (70% and 30% for training
and testing, respectively) to evaluate the performance of the model, and this
process was iterated 300 times to generate confidence intervals. The smoothing
function reclassifies SVM predictions for each observation based on the nearest
temporal neighbors, and the threshold probabilities reclassify observations as
Unknown if the probability associated with the SVM prediction falls below the
designated threshold.
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Golden et al., 2002). We used Lotek Iridium Litetrack 250 collars
(~250 g, Lotek Wireless, Newmarket, Canada), to which we attached
tri-axial accelerometers (AXY-3, 10 g, Technosmart Europe Srl., Colle
Verde, Italy), using a combination of epoxy and steel cable ties. Ac-
celerometers recorded at a frequency of 10 Hz. Collars weighed less
than 3% of the animal's body mass, and were equipped with both me-
chanical release mechanisms and rot-away strips to ensure release from
the animal. All capture and handling of free-living wolverines was
conducted under UAF IACUC protocol #847738, and Alaska Depart-
ment of Fish and Game scientific permit 18-085.
We opportunistically collected a single instance of labeled accel-

erometer data from a free-living collared wolverine. To do so, we fol-
lowed fresh tracks in the snow at a site used<24 h prior by the col-
lared wolverine. We followed the tracks for approximately 1 km, during
which time the individual maintained an unfaltering 3 × 3 lope char-
acteristic of a running wolverine. Upon retrieving the accelerometer,
we examined the data associated with this time period and extracted
the portions having high-amplitude periodic motion, which we labeled
as running. We included these data in our labeled full training dataset.

2.2. Data processing

Prior to processing data collected from captive wolverines, we first
corrected for temporal drift in accelerometers by comparing the “power
off” time recorded by the accelerometer with that displayed by the
watch (which were synchronized at accelerometer deployment). Drift
rates ranged between 0.3 and 1.5 s per day, depending on accel-
erometer, during the 10 days deployed. To account for this, we assumed
a constant rate of drift and applied an accelerometer-specific linear
correction to the timestamps associated with observations. In addition,
we subtracted 1 s from the end of every behavioral observation to ac-
count for recorder error, reflecting the difference between the actual
end of the activity and the moment the observer looked at their watch.
Since the accelerometers we deployed on free-living wolverines

were not oriented in the same direction with respect to the animal's
body, and we suspected that collars rotated around the animal's neck
during deployment, we were unable to confidently delineate the surge,
sway, and heave axes traditionally used in tri-axial accelerometer
analysis for all individuals. To mitigate this problem, we converted the
tri-axial measurements taken by the accelerometers into a vertical and
horizontal component based on Mizell (2003). This required first esti-
mating the magnitude of gravity along each axis, g = (gx, gy, gz), by
applying a running mean over a 2 s window to the raw accelerometer
data (the result is referred to as the static acceleration). We then sub-
tracted this from the raw acceleration to estimate dynamic acceleration
d = (ax − gx, ay − gy, az − gz) where (ax, ay, az) is the vector re-
presenting the raw acceleration data for any given time. We then
computed the projection v of d on the vertical axis g using vector dot
products, as

=v d g
g g

g

This computation yields the vector v= (vx, vy, vz), which represents
the vertical component of dynamic acceleration along each axis of the

accelerometer. The horizontal component can then be calculated for
each axis using the Pythagorean theorem, wherein

=h d v2 2

resulting in a horizontal value for each axis, representing the direc-
tionless magnitude of acceleration in the horizontal plane. We summed
vx, vy, and vz to find the total acceleraton in the vertical direction which
we term “vertical acceleration” (analogous to the heave axis), and we
summed hx, hy, and hz as a representation of the total acceleration in the
horizontal plane, which we term “horizontal acceleration” (analogous
to the sum of the absolute values of the sway and surge axes). In ad-
dition, we calculated the overall dynamic body acceleration (ODBA,
Gleiss et al., 2011) by summing the absolute dynamic acceleration
values across the all three axes, and the vectorial dynamic body ac-
celeration (veDBA, Gleiss et al., 2011) as

= + +veDBA d d dx y z
2 2 2

2.3. Summary statistic calculation

To generate predictor variables for behavioral classification, we
partitioned the vertical and horizontal acceleration data, ODBA, and
veDBA into 10 s segments, each segment termed an “observation,” and
calculated summary statistics for each (complete list in Table 1, dis-
tributions of summary statistics in Appendix A). We calculated domi-
nant power spectrum (DPS) and frequency at DPS using a Fast Fourier
Transform (Brigham and Morrow, 1967). We discarded any observa-
tions less than 10 s in duration, only retained behavioral classes with at
least 20 observations, and termed the resulting dataset the “full
training” dataset. We excluded 13 observations for which the horizontal
or vertical acceleration was zero for the duration of the observation,
since kurtosis and skewness could not be calculated. We assumed, and
verified, that all such observations belonged to the behavioral class
Rest, and employed this assumption in making predictions for the data
of free-living wolverines (see Application to free-living wolverines).
This resulted in nine behavioral classes ultimately included in our
analysis (Table 2). All observations belonging to classes with fewer than
20 observations were termed the “withheld” dataset and were used
later in evaluating performance (see Modeling).

2.4. Modeling

We used the machine learning technique Support Vector Machines
(SVM) to classify behaviors from accelerometer data, implemented in R
package e1071 (Meyer et al., 2018; R Core Team, 2018). Our choice of
SVM reflects this method's high predictive performance in behavior-
recognition tasks (Campbell et al., 2013; Grünewälder et al., 2012;
Tatler et al., 2018), and our desire to employ a probabilistic modeling
framework, since probabilities associated with predictions are integral
to our evaluation of unknown behaviors. SVM assign data to user-de-
fined classes by constructing a hyperplane between binary classes. The
number of observations allowed to violate the hyperplane is controlled
by a user-defined cost parameter, and a margin surrounding the hy-
perplane is maximized. The hyperplane is chosen as that which allows

Table 1
Summary statistics calculated for each 10 s partition of accelerometer behavior, used as predictor variables in Support Vector Machine classification models.

Summary statistic Label/Predictor Description

Mean meanH, meanV, meanODBA, meanQ Mean of the horizontal acceleration, vertical acceleration, ODBA, and veDBA
Max maxH, maxV, maxODBA, maxQ Maximum of the horizontal acceleration, vertical acceleration, ODBA, and veDBA
Standard deviation sdH, sdV, sdODBA, sdQ Standard deviation of the horizontal acceleration, vertical acceleration, ODBA, and veDBA
Kurtosis kurtH, kurtV, kurtODBA, kurtQ Kurtosis of the horizontal acceleration, vertical acceleration, ODBA, and veDBA
Skewness skewH, skewV, skewODBA, skewQ Skewness of the horizontal acceleration, vertical acceleration, ODBA, and veDBA
Dominant power spectrum dpsH, dpsV Maximum power spectral density of the horizontal and vertical acceleration
Frequency at the dominant power spectrum freqH, freqV Frequency at the maximum power spectral density of the horizontal and vertical acceleration

T.W. Glass, et al. Ecological Informatics 60 (2020) 101152

3



the largest separation between classes, i.e. the widest margin sur-
rounding the hyperplane. Hyperplanes are defined by the observations
that either fall within the separating margin, or that violate the se-
parating hyperplane, and these observations are termed “support vec-
tors.” Hyperplanes can take nonlinear forms by applying a kernel
function to the inner product of the support vectors (Aizerman et al.,
1964). We chose to use a radial kernel for maximal flexibility in hy-
perplane definition. To generalize this binary classifier to a multiclass
response, we used a “one-versus-one” approach, in which observations
are classified for every possible pair of classes and the class most
commonly selected is the predicted value. A-posteriori class prob-
abilities can be computed by fitting a logistic distribution to the deci-
sion values of all binary classifiers and extracting class probabilities
using quadratic optimization. In addition to the cost parameter, support
vector machines with a radial kernel can be tuned using a gamma
parameter, which weights support vectors in the definition of the hy-
perplane. We used 5-fold cross validation on the full training dataset
and calculated accuracy (see Model evaluation) as an indication of
model performance across all combinations of gamma = (0.001, 0.01,
0.1, 1, 2, 4) and cost = (0.1, 1, 10, 100, 250, 500, 750, 1000, 10,000),
selecting the parameters that yielded the best performing model for all
further analyses (parameters chosen per recommendations in Hsu et al.,
2010). A more detailed, accessible description of SVMs can be found in
James et al (2017).
Since our behavioral classes were unbalanced, we included class

weights in the SVMs, calculated as

=w N
nik

k

ik

where wik is the weight of class i for the kth iteration of cross validation,
Nk is the total number of observations in the full training data for the kth

iteration of cross validation, and nik is the number of observations in
class i for the kth iteration of cross validation.
We were interested in building a modeling framework that explicitly

incorporated unknown behaviors (i.e. behaviors within the ethogram of
a free-living wolverine that we did not observe among those in cap-
tivity), such that these unknown behaviors would be identified as
Unknown by the model. To do this, we set a threshold level for a-pos-
teriori class probabilities associated with predicted behaviors, below
which predictions were assigned to the category Unknown. To evaluate
how well the model correctly classified such unknown behaviors, we fit
a model to the full training dataset and made predictions for all ob-
servations in the “withheld” dataset, using these as proxies for beha-
viors that we didn't observe among wolverines in captivity. Since these
withheld observations (observations that belonged to behavioral classes
observed at low frequency among captive wolverines) were all known
to belong to behaviors other than those in the full training dataset, the
“perfect” model would categorize them all as Unknown, and this result
is approached as the threshold probability value increases to one.
However, increasing the threshold probability comes at the cost of

incorrectly categorizing some known observations as Unknown, so we
selected the optimum threshold probability as that which maximized
both the proportion of withheld observations that were correctly clas-
sified as Unknown and the model's accuracy in classifying known ob-
servations correctly, referenced to the entire dataset (termed “full ac-
curacy”, see Model evaluation). We evaluated threshold probabilities
ranging from 0 to 0.95 by increments of 0.05, and bootstrapped the
procedure 300 times, resampling the full training dataset with re-
placement, to generate confidence intervals.
We were also interested in examining the effect of applying a

smoothing function to predicted behavioral classes (Cao et al., 2012;
Chimienti et al., 2016; Grünewälder et al., 2012). We therefore made
predictions for the 10 s observations immediately following and pre-
ceding the observation of interest, and the predicted behavior of the
observation of interest became the class that occurred most commonly
within this 30 s window. If the three predicted classes within the
window were all different, the observation of interest retained its ori-
ginal class. We performed this in tandem with applying threshold
probabilities, such that predictions were subject to reclassification as
Unknown according to the threshold probability before being subject to
the smoothing function.
We defined the “base model” as that which was subject to neither a

smoothing function nor a threshold probability, the “base +
smoothing” model as that which was subject to a smoothing function
but no threshold probability, and the “threshold model” as either the
smoothing model or the non-smoothing model that had the highest
accuracy at the optimal threshold probability.

2.5. Model evaluation

To evaluate the performance of our model, we relied on metrics
derived from tallies of True Positives (T+), True Negatives (T−), False
Positives (F+), and False Negatives (F−). These groups are tallied for
each behavioral class in a single model independently. Specifically, for
a given behavior, observations whose predicted class and true class
both match the given behavior are considered T+, observations whose
predicted class and true class neither match the given behavior are T−,
observations whose predicted class matches the given behavior but
whose true class does not are F+, and observations whose true class
matches the given behavior but whose predicted class does not are F−.
These terms are straightforwardly depicted using a confusion matrix
(Fig. 2). We used 300 bootstrapped samples, with a new random 70/30
draw of training/testing data drawn from the full training dataset,
stratified by behavior, for each iteration, to generate tallies of T+, T−,
F+, and F−, and to calculate associated confidence intervals. The
training/testing split mentioned here, used only during this boot-
strapping process, should not be confused with the full training dataset
defined above. The bootstrap method allows explicit estimation of
confidence intervals for performance metrics, unlike the more tradi-
tional k-fold cross validation (Champagne et al., 2014).

Table 2
Description, number of 10 s observations, and number of individuals represented in the full training dataset used in classification model. Observations from all three
captive wolverines were included for all behaviors, to which we added observations of the behavior “Run” from a single free-living wolverine.

Intensity Behavior Description N observations N Ind (m,f)

Low Rest Motionless except breathing. Excludes motion during rest, e.g. rolling over. 299 3 (1,2)
Scan Survey surroundings by moving head while torso and legs remain stationary. 128 3 (1,2)

Medium Walk Slow, sometimes meandering, directional movement. 63 3 (1,2)
Groom Lick and lightly chew on feet, stomach, and groin. 141 3 (1,2)
Eat Chew item in mouth with head raised. 66 3 (1,2)
Gnaw Chew on bone, piece of wood, or frozen food by holding it in front (and sometimes hind) paws, usually using one side of the

mouth only.
40 3 (1,2)

Transfer Pick up items such as sticks and leaves from the ground and move them with a rapid sway of the head to the side. In captivity
this behavior was always associated with covering food items.

121 3 (1,2)

Tear Remove pieces of meat from carcass by pulling with teeth, can include short bursts of gnawing and eating. 443 3 (1,2)
High Run Rapid directional movement. 158 4 (1,3)
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Once these values are calculated for each behavior, a variety of
metrics can be derived to evaluate the performance of the model. We
chose to calculate accuracy, precision, and recall (sometimes called
sensitivity), as these are relatively common among accelerometer-based
behavioral classifiers and enable comparison across studies. Accuracy is
defined as the proportion of the observations that are classified cor-
rectly, calculated as:

+ +
+ + + + +

T T
T T F F

( ) ( )
( ) ( ) ( ) ( )

When calculating accuracy for the purpose of selecting a threshold
probability (see Modeling), we replaced the denominator with the total
number of observations (i.e. including those which fell below the
threshold probability and were classified as Unknown), thereby pro-
viding a metric that assessed the cost of increasing the threshold
probability, and termed the result “full accuracy.”
Precision is defined as the proportion of predicted observations for a

given behavior that actually belong to that behavior, calculated as:

+
+ + +

T
T F

( )
( ) ( )

Recall is defined as the proportion of true observations for a given
behavior that were predicted to belong to that behavior, calculated as:

+
+ +

T
T F

( )
( ) ( )

To assess overall model performance, each metric can be either
micro-averaged, whereby the values for T+, T-, F+, and F- are
summed across behaviors and the overall metric is calculated on the
summed values, or macro-averaged, whereby the metric is calculated
for each behavior independently and subsequently averaged (Sokolova
and Lapalme, 2009). Since micro-averaging favors larger groups in an
unbalanced model, we macro-averaged accuracy to reduce such bias.
Since precision and recall can be undefined for a given behavior, we did
not average these values and instead evaluated them at the level of
individual behaviors only.
We were also interested in evaluating the relative importance of

each variable in the predictive performance of the model. To do this, we
iteratively left one variable at a time out of the model and calculated
the decrease in accuracy from the full model. We found that model
predictive accuracy was reduced by<0.1% regardless of the variable

dropped, suggesting high redundancy across variables.

2.6. Application to free-living wolverines

To illustrate the efficacy of this model, we made predictions of the
behaviors exhibited by the seven free-living wolverines. To do this, we
processed the data of free-living wolverines and extracted summary
statistics as described above, and used all three candidate models, fit to
the full training dataset (see Summary statistic calculation), to make
predictions for the free-living observations. Since kurtosis and skewness
for observations with horizontal or vertical acceleration values of zero
could not be calculated, we did not use the models to make predictions
for such observations, instead assigning them to Rest, a classification
that was supported by the data of the captive wolverines (see Summary
statistic calculation). We chose to retain only predictions associated
with behaviors whose lower confidence level of precision was greater
than 0.6 for all three models, since low precision values indicate a low
probability that the prediction is correct. For each model's predictions,
we calculated the proportion of each hour of the day each animal spent
engaged in each behavior, averaged across a season. We defined the
seasons spring and summer as between February 25–May 10 and May
11–July 27 respectively, roughly corresponding to the many ecological
and physiographic changes that take place in the Arctic around May 10,
including rapid snow ripening and melt (Macander et al., 2015), dis-
appearance of river and lake ice (Arp et al., 2013), caribou and bird
migration (Tape and Gustine, 2014), and grizzly bear and ground
squirrel emergence (Buck and Barnes, 1999; McLoughlin et al., 2002).
Since the purpose of this study was to develop a modeling framework
for making such predictions, and not to make inference on the beha-
viors of free-living wolverines per se, we chose to simply visualize these
predictions by plotting the mean proportions of time spent in each
behavior by hour of day, averaged across individuals.
Since the purpose of this study was to develop and evaluate a

modeling framework for making behavioral predictions of free-living
animals, we also used the predictions made for free-living wolverines to
compare broad-scale differences of predictions made by the three
models.

3. Results

3.1. Model development and evaluation

Model tuning yielded optimum values of gamma = 0.01 and
cost = 10. The base model had an overall predictive accuracy of 94.6%
(95% CI: 93.2–95.8%) and correctly classified 326 (95% CI: 288–360)
of the 433 observations in the 30% portion of the full training dataset
used for testing (75.4%, 95% CI: 66.5–83.1%). Performance for in-
dividual behaviors ranged from a precision of 0 to 0.98, and recall
ranged from 0 to 0.97 (Table 3). The “base + smoothing” model had an
overall accuracy of 95.8% (95% CI: 94.4–96.8%), and correctly classi-
fied 349 (95% CI: 311–379) of the 433 observations in the testing da-
taset (80.6%, 95% CI: 71.8–87.5%). The optimum threshold probability
for the non-smoothed model was 0.65, and for the smoothed model was
0.625 (Fig. 3). At the optimum threshold probability of each, the
smoothed model and non-smoothed model correctly classified 55.4%
(95% CI: 41.7–70.9%) and 51.2% (95% CI: 40.5–64.3%) of observa-
tions in the withheld dataset as Unknown, respectively. The full accu-
racy at the optimum threshold probability for the smoothed model was
57.5% (95% CI: 52.3–62.4%), which was higher than that of the non-
smoothed model (53.4%, 95% CI: 49.0–57.7%). Therefore, the
“threshold” model was selected as the smoothed model with a threshold
probability of 0.625. The “threshold” model incorrectly classified 179
(95% CI: 157–202) observations as unknown, and had an overall ac-
curacy of 98.3% (95% CI: 96.6–99.5%), correctly predicting 92.2%
(95% CI: 88.5–95.4%) of the remaining observations (Fig. 4).
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Fig. 2. Example confusion matrix for behavioral classes A-F depicting the cal-
culation of True Positive (T+), True Negative (T−), False Positive (F+), and
False Negative (F−) values. Each metric is tallied for each class independently;
the figure depicts these values for behavioral class F. This figure does not re-
present actual data, and is included only to demonstrate how performance
metrics are calculated.
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3.2. Application to free-living wolverines

At a gross level, the “base” and “base+smoothing” models yielded
similar predictions for free-living wolverines, while the “threshold”
model classified 32.4% of observations as Unknown (Fig. 5). Of the
observations classified as Unknown by the “threshold” model, the
“base” model classified 13.8% as Run, 4.3% as Scan, 8.5% as Rest,
12.0% as Transfer, and 50.8% as Tear, while the “base+smoothing”
model classified 13.4% as Run, 3.7% as Scan, 8.3% as Rest, 10.4% as
Transfer, and 55.4% as Tear. The remaining observations that were
classified as Unknown by the “threshold” model were predicted by the
other two models to belong to behavioral classes with low precision
values. All three models predicted Rest as the most commonly occurring
behavior at 47.3%, 48.1%, and 45.4% of all observations for the “base,”
“base+smoothing,” and “threshold” models respectively. All three
models revealed that the seven wolverines generally spent more time
resting between approximately 14:00 and 00:00 local time during
summer, and had peak resting times around 17:00 and 02:00 during
spring (Fig. 5).

4. Discussion

Classifying behaviors from accelerometer data is an increasingly
popular technique for addressing questions relating to the ecology and
physiology of free-living animals. Considerable progress has been made
in the field, particularly in evaluating the performance of different
classification models (Nathan et al., 2012; Tatler et al., 2018) and the
integration of multiple data sources, such as GPS and acoustic re-
corders, with acceleration to predict behavior (Shamoun-Baranes et al.,
2012; Studd et al., 2019). Despite many such studies relying on pre-
dictive models built from direct observation of captive conspecifics, to
our knowledge only one has explicitly addressed the problem of be-
haviors exhibited by free-living animals but not their captive counter-
parts (Rast et al., 2020), and that did so without a formal evaluation of
efficacy.
Therefore, the purpose of this study was to create and evaluate a

modeling framework that maximized predictive performance of beha-
viors from accelerometer data while simultaneously minimizing the
incorrect classification of behaviors that are unknown to the model. Our

Table 3
Accuracy, precision, and recall for all behaviors for the base, base + smoothing, and threshold models. Bootstrapped 95% confidence intervals are shown in
parentheses.

Base model Base + Smoothing Threshold model

Behavior Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Tear 0.83 0.67 0.90 0.86 0.70 0.96 0.95 0.89 0.99
(0.80,0.86) (0.63,0.71) (0.84,0.95) (0.83,0.88) (0.66,0.74) (0.91,0.99) (0.92,0.98) (0.81,0.95) (0.96,1.00)

Groom 0.93 0.63 0.60 0.96 0.79 0.74 0.99 0.75 0.58
(0.91,0.94) (0.52,0.76) (0.45,0.74) (0.94,0.97) (0.66,0.90) (0.58,0.86) (0.97,1.00) (0.00,1.00) (0.00,1.00)

Transfer 0.96 0.76 0.69 0.98 0.90 0.86 0.99 0.94 0.90
(0.94,0.97) (0.63,0.89) (0.54,0.83) (0.97,0.99) (0.80,1.00) (0.75,0.97) (0.97,1.00) (0.80,1.00) (0.70,1.00)

Scan 0.95 0.78 0.65 0.97 0.88 0.71 0.98 0.94 0.70
(0.94,0.97) (0.67,0.91) (0.50,0.76) (0.95,0.98) (0.75,1.00) (0.55,0.83) (0.95,0.99) (0.80,1.00) (0.47,0.90)

Rest 0.96 0.86 0.97 0.97 0.88 0.99 0.98 0.93 1.00
(0.94,0.98) (0.79,0.91) (0.91,1.00) (0.96,0.99) (0.83,0.93) (0.94,1.00) (0.96,0.99) (0.88,0.99) (0.99,1.00)

Eat 0.95 0 0 0.95 1.00 0 0.98 – 0
(0.95,0.95) (0.00,1.00) (0.00,0.05) (0.95,0.96) (0.00,1.00) (0.00,0.05) (0.96,0.99) (0.00,0.00)

Walk 0.97 0.90 0.47 0.97 0.90 0.42 1.00 1.00 0
(0.96,0.98) (0.63,1.00) (0.21,0.68) (0.96,0.98) (0.61,1.00) (0.08,0.68) (0.99,1.00) (0.00,1.00) (0.00,1.00)

Run 0.99 0.98 0.92 0.99 0.98 0.89 1.00 1.00 0.98
(0.98,1.00) (0.91,1.00) (0.84,0.98) (0.97,1.00) (0.93,1.00) (0.79,0.96) (0.99,1.00) (0.97,1.00) (0.92,1.00)

Gnaw 0.97 0 0 0.97 0 0 0.99 – 0
(0.97,0.97) (0.00,0.00) (0.00,0.00) (0.97,0.97) (0.00,0.00) (0.00,0.00) (0.98,1.00) (0.00,0.00)
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Fig. 3. Full accuracy (red) and proportion of withheld observations classified correctly as unknown (blue) across threshold probabilities, without (A) and with (B) a
smoothing function. The optimum threshold probability was selected as that which maximized both values (0.625 using the smoothing function, 0.65 without the
smoothing function). Confidence bands are 95% quantiles, calculated pointwise using 300 bootstrap iterations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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results indicate that this process can yield a high-performing model,
with macro-averaged accuracy of over 98%, using a modeling frame-
work that is conceptually straightforward and computationally effi-
cient. Moreover, the explicit allowance for behaviors unknown to the
model improves its generalizability to accelerometer data gathered on
free-living animals, since it is likely that the range of behaviors ex-
hibited by captive animals is different from those of wild animals.
Additionally, our results indicate that predictive performance can be

improved by applying a temporal smoothing function to predictions
(Table 3, Fig. 4), exploiting the apparently high degree of temporal
correlation among behaviors exhibited by captive wolverines over a
30 s period. Previous studies have employed similar approaches (Cao
et al., 2012; Chimienti et al., 2016; Grünewälder et al., 2012), although
formal evaluation of the effect on model performance has been limited.
A notable exception is (Cao et al., 2012), who evaluated the effect of
applying such a smoothing function across a range of window lengths,
and allowing such windows to vary by behavioral class. It is important
to note that increasing the window length for both the smoothing
function and the initial computation of summary statistics will reduce
predictive performance for behaviors that typically occur at intervals
shorter than the chosen window.

The practice of applying a threshold probability to behavioral pre-
dictions from accelerometer data has been employed before (Bellsolá,
2019; Bidder et al., 2014; Rast et al., 2020; Ware et al., 2015), including
as an explicit means of reducing the incorrect classification of unknown
behaviors (Rast et al., 2020). However, as noted above, previous studies
have not formally evaluated the efficacy of this approach. By including
observations from behaviors unknown to the model in our approach,
we have developed a method of achieving such explicit evaluation. Our
model selection process settled on 0.6 as the optimum threshold
probability for maximizing model performance, but this value will
undoubtedly vary by species, training dataset, and classification model
used. Importantly, the model selection process developed here,
whereby we evaluate the predictive performance of the model si-
multaneously for behaviors both known and unknown to the model
across a range of threshold probabilities, can be used with any prob-
abilistic classification model (or any classification model for which a-
priori class probabilities can be calculated), not just SVM.
While the process of explicitly accounting for unknown behaviors

improves the precision of the classifier, it does not yield a complete
activity budget for a free-living animal and therefore excludes or in-
troduces uncertainty into some biological questions, including those
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Fig. 4. Confusion matrices for the base model, base + smoothing model, and threshold model. Values are the median number of observations classified in each
category across 300 bootstrap iterations. For the threshold model, the percent classified as correct in the confusion matrix differs from the median value reported in
the results since the number of observations classified as Unknown varied across bootstrap iterations.
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days, and then across individuals.
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addressing temporal niche partitioning or rhythms of specific beha-
viors. We argue that this trade-off is necessary, since investigating such
questions using a classifier that fails to account for such unknown be-
haviors would be based on the likely incorrect assumption that all be-
haviors are known to the model.
Although our “threshold” model had a macro-averaged accuracy of

98.3%, this metric risks overstating the performance of the model. Since
model performance can be somewhat subjectively determined by
whichever metric is most important for a given study, it is important to
inspect the behavior-specific precision and recall values as well
(Table 3). A high precision value indicates that most of the observations
classified as a given behavior actually belong to that behavior, and a
high recall value indicates that most of the observations that belonged
to a given behavior were actually classified as that behavior. Since our
interest was in making predictions for out-of-sample observations of
free-living wolverines, model performance is best reflected by precision
(Bidder et al., 2014). Our “threshold” model had very poor precision
and recall for certain behaviors, but quite high values for others. Spe-
cifically, it failed to classify any observations, or classified only two
observations, into four of the nine categories (Eat, Gnaw, Groom, and
Walk), instead incorrectly classifying many of these observations as
either Unknown or Tear. As a result, the model had lower precision for
Tear, and low recall for Eat, Gnaw, Groom, and Walk. Each of these
behaviors are medium activity (Table 2), with little to no periodicity, so
this result is unsurprising. The behaviors most frequently misclassified
as Tear were all associated with food handling, so for out-of-sample
predictions this category could be considered a catch-all “food-hand-
ling” class. The relatively high precision values for Rest, Scan, Run, and
Transfer suggest that the most reliable biological inference will be made
about these behaviors.
In applying the model to data from free-living wolverines, we aimed

to demonstrate its utility and provide a proof-of-concept that could be
used by other researchers to evaluate the applicability of the model to
their specific questions. The behavioral predictions we obtained show
considerable variation by hour-of-day and season. Previous research of
circadian rhythms in wolverines at high latitudes found a drop in ac-
tivity around midday during spring and summer (Thiel et al., 2019),
consistent with the generally higher frequency of resting that we ob-
served during that period among the animals in our study, although the
seven animals in our study also exhibited more resting around 02:00
during spring (Fig. 5). These results cannot be generalized without a
larger sample.
Behavioral classification from accelerometer data is a promising

area of active research, with the potential to greatly improve our un-
derstanding of the behavior of free-living animals. Coupled with other
biologged data, such as location, body temperature, and heart-rate,
accelerometry can shed light on the wide range of ecological and
physiological processes governing behavioral decisions (Wilmers et al.,
2015), including species' response to climate change (Chmura et al.,
2018). However, developing accurate predictive models to extract be-
havior from accelerometer data remains challenging, and each model
will be characterized by relative strengths and weaknesses. Formal
evaluation of such characteristics, through consistently defined metrics
such as accuracy, precision, and recall, is crucial to the advance of the
field and comparison of different modeling approaches. Here, we have
presented a novel high-performance modeling approach for classifying
accelerometer data into discrete behaviors, which can be readily
exploited by other researchers with accelerometer data from wolver-
ines, or adapted to other species.
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